Spatial clustering of tuning in mouse primary visual cortex
نویسندگان
چکیده
منابع مشابه
Spatial clustering of tuning in mouse primary visual cortex
The primary visual cortex of higher mammals is organized into two-dimensional maps, where the preference of cells for stimulus parameters is arranged regularly on the cortical surface. In contrast, the preference of neurons in the rodent appears to be arranged randomly, in what is termed a salt-and-pepper map. Here we revisited the spatial organization of receptive fields in mouse primary visua...
متن کاملSpatial integration in mouse primary visual cortex.
Responses of many neurons in primary visual cortex (V1) are suppressed by stimuli exceeding the classical receptive field (RF), an important property that might underlie the computation of visual saliency. Traditionally, it has proven difficult to disentangle the underlying neural circuits, including feedforward, horizontal intracortical, and feedback connectivity. Since circuit-level analysis ...
متن کاملDynamics of spatial frequency tuning in mouse visual cortex.
Neuronal spatial frequency tuning in primary visual cortex (V1) substantially changes over time. In both primates and cats, a shift of the neuron's preferred spatial frequency has been observed from low frequencies early in the response to higher frequencies later in the response. In most cases, this shift is accompanied by a decreased tuning bandwidth. Recently, the mouse has gained attention ...
متن کاملOrientation Tuning Depends on Spatial Frequency in Mouse Visual Cortex
The response properties of neurons to sensory stimuli have been used to identify their receptive fields and to functionally map sensory systems. In primary visual cortex, most neurons are selective to a particular orientation and spatial frequency of the visual stimulus. Using two-photon calcium imaging of neuronal populations from the primary visual cortex of mice, we have characterized the re...
متن کاملGamma Frequency and the Spatial Tuning of Primary Visual Cortex
Visual stimulation produces oscillatory gamma responses in human primary visual cortex (V1) that also relate to visual perception. We have shown previously that peak gamma frequency positively correlates with central V1 cortical surface area. We hypothesized that people with larger V1 would have smaller receptive fields and that receptive field size, not V1 area, might explain this relationship...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Nature Communications
سال: 2016
ISSN: 2041-1723
DOI: 10.1038/ncomms12270